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The concept playing a central role in the theory which will be
described is the notion that the ensemble of points in signal space which
represents a set of nonidentical events bolonging to a common category
must be close to éach other as measured by some as yt.at unknown method of
masnring distance, since the points represent events which are cloop to.
each other in 'the sense that they are members of the same category.
Mathematically speaking, the fundamental notion underlying the theory is
that similarity (closeness in the sense of belonging to the same class or
c.augory) is expressible by a metric (a method of measuring distance) by )
which points representing examples of the categnry we wish to recognize |
are found to 1lie close to each other,

To give credence to this conjecture, consider what we mean by
the abstract concept of a class. Accordiné to one of the possible
definitions, a class is a eollection of things which have some common
properties, By a modification of this thought, a class coz;ld be character-
ized by the common properties of its members, A metric by which points
representing exsmples of a class are close.bo each other must therefors
operate crhiefly on the common properties of the exa'xﬁples and must ignors,”
to a large extent, those properties not present in each example. As s
consequbnce of this argument, if a metric were found which called examples
of the class close, somehow it must exhibit their common properties,

To present this fundamental idea in a slightly different way, we
can state th:at a transformation on the signal space \;;lich is capable of
clua'tering the points repres;nting the examples of the clases must operate

primarily on the common properties of the examples, A simple illustration
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of this idea is shown in Figure 1, where the eriumbl.o of points is spread
out in signal space (only a two-dimensionsl space is shown for eass of

11lustration) but a transformation T of the spacs is able to cluster t.ho :
points of the ensemble, o '

2 2

Figure 1, Clustering by Transformation

In the above example neither the signal's property represented by coordinate 1
nor that represented by coordinate 2 is sufficient to describe the class,
for the spread in both is large over the ensemble of points. Some fuﬁc’t.ion
of the two coordinates on the other hand, would exhibit the common property
that the ratio of the value of coordinate 2 to that of coordinate 1 in each
point in the ensemble is nearly unity. In this specific instance; of
course, simple correlation between the two coordinates would exhibit this
property, but in more general situations simple correlation will not suffice.
If the signal space shown in Figure 1 were flexible (as if made of
a rubber sheet), the transformation T would express the manner in w.hiclh
various portions of the space must be stretched or compressed, in order to
bring the points together most closely.

N
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Although thinking of transformations of the space is not as general
as thinking about exotic ways of measuring "distance" in the original space, -
the {ormor is a rigorously correct and easily visualized analogy for many
important classes of metrics, -

" Mathematical techniques have been developed to aut;mnticllly'tind
the "best" metric of "best" transformation of given classes of metrics
" according to suitable criteria which establish "best”,

As any mathematical theory, the one which evolved from the
preceeding ideas is based on certain assumptions. The most basic assumption
is that the N-dimensjonal signal space representation of events exempli fying
their respective classes is complete enough to contain information about the
common proper ties which serve to characterize the olasses, The significance
of this assumption is appreciate& if we consider, for example, that the
signal space contains all the information that a black and white television
picture could present of the physical objects making up the sequence of
events which constitute the examples of a class., No matter how ingenious
the data processing schemes that we might evolve are, objects belonging to .
the category "red things".could not be identified, because representation
of the examples by black and white television simply does not contain
color information. For any practical situation one must rely on engineering
Judgment and intuition to determine if the model of the real world (the
signal space) is complete enough, Fortunately, in most cases, this
determination may be made with considerable confidence.

A second assumption states the class of transformations or the

class of metrics within which we look for the "best", This assumption
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2, A SPECTIAL THEORY OF SIMILARITY

2.1 Similarity
The central problem of pattern recognition is viewed in this

work as the problem of developing a function of a point and a set of
points in an N-diménsional space to partition the space into a mmber of
regions corresponding to the categories to which the kmown set of points
belong, A convenient special—but not essential—way of thinking about
this partitioning function is to consider it formed from a set of functions,
one for each category, where each furction measures the "likelihood"#
with which an arbitrary point of the space could best fit into the par-
ticular functionfs own category. In a sense, each function measures the
similarity of an arbitrary point of the space to a category and the par-
titioning function aseigns the arbitrary point to that category to which
the point is most similar,

The foregoing concept of partitioning the signal space is
illustrated in Figure 2 where the signal space has two dimensions and the
space is to be partitioned iﬁto two categories, In Figure 2a, the height
of the surface above the x-y plane expressec the likelihood that a point
belongs to Category 1, while that of the surface in Figure 2b expresses
the likelihood that the point belongs. to Category 2. The intersection .
between the two surfaces, shown in Figure 3a and b, marks the boundary
between Region 1 where poiqta are more likely to belong to Category 1
than to Category 2, and Reglon 2, where the reverse is true‘.

* Although the Term "IkeIlhood™ has an already well-defined meaning In
decision theory, it is used here in a qualitative way to emphasize the
similarity between fundamental idets in decision theory and in the
theory which is here described, :
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a) "Likeldhood® of Membership in Category 1

b) "Likelihood" of Membership in Category 2

~ Figure 2, Likelihood of Membership in Two- Categories
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Figure 3. Classification by aximum Likelihood Ratio
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For each category of interest a set of likelihood ratios may
be computed which express the relative likelihood that a point in question
belongs to the category of interest rather than to any of the others.

From the maximum of all 1ikelihood ratios which correspond to a given point,
we may infer to which category the point most likely belongs,

The reader vill recognize the idea of making decisions dased on
the maximun 1ikelihood ratio as one of the important’ concepts of decision
theory. The objective of the preceding discourse is, therefors, simply
to make the statement that once a function measuring the likelihood that
& point belongs to a given category is developed, there is at least one
well-established precedent for partitioning signal space into regions
which are associated with the different categories. The resulting regions
are like a template which serves to oategorize points depending upon whether
they are covered or are left uncovered by the template, Although in the
rest of this chapter partitioning the signal space is based on a measure of
similarity which resembles the likelihood ratio only in the manner in which
1t is used, 1t is shown elsewhere that, in certain cases, docisiom
based on the measure of similarity are identical to those based on the
maximum likelihood ratio.,

One might wonder whether the error criterion by which similarity to
a class of things is measured should be based on known members of the class
only, or also on the additional kmowledge gained from a set of things which
do not belong to the class, The philosophical question posed by these two
possibilities is whether one is aided in learning to recognize membership in
a category if, during the period of learning, examples of nonmembers of the
category are also given, It seems. plausible that increasing the knowledge
available on members and nonmembers of the category may better the separation

12
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betvecn categories. There are significamt categories, however, where
knowledge of nonmermbers does not help to determine what constitutes
membership in the category. Tha analogous situation in decision theory

is pointed out later.

In the first three chapters of this report, a quantitative measure
of similority is developed in a special theory where similarity is con-
sidered as a property of only the point to te compared and the set of
points vhich belong to the category to be learned. In later chapters,
hovever, methods will be discussed for letting knovm nonmembers of the
class influence the development of measures of similarity.

In the special theory of the first three chapters, similarity of an
event P to a category is reasured by the closeness of P to every one of
those events {th known to be contained in the category. Similarity S
is regarded as the average "distance" between P anc the class of events
represented by the set EFEE of its exarples,

Two things should be noted about the foregoing definition of
similarity. One is that the method of measuring distance does not
influence the definition., Indeed, distance is not meant here in the
ordinary Euclidean sense; it ngy rmean "closeness" in some arbitrary,
abstract property of the set Zﬂni vhich has yet to be determined. The
second thing to note is that the concept cf distance between;points, or
distance in general, is not fundamental to a concept of similarity, The
only aspect of similarity'really considered essential is that it is a
real valued function of a point and 1 set which allows the ordering of
points according to their similarity to the set., The concept of distance

is introduced here as a mathematical convenience based on intuitive notions

L B
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of similarity, It will be apparent later hovw this forms part of the
assunptions stated in .t?f' Introduction as underlying tho‘theu'; to be
presented. Even with the introdustion of the concept of distance there
are other vays of defining similarity. Nearnees to the closest member
of the set is one such poseibility, This impliee that an event ie similar
to a class of evente if it is close in some sense to any member of the class.
It is not the purpose of this chapter to philosophize about the relative
merits of these different ways of defining similarity, Their advantages
and dieadvantagee will bacome apparent as thie theory 1s developed, and the
reader will be able to judge for himself which set of assumptions is moet
applicable under a given set of circumatancea.'
To summarize the foregoing remarks, for the purposee of the

special theory, similartty 8 (P, {Fa3)of a potnt P and a eet of points

{Fh} examplifying a claes will b; defined as the average distance between
the point P and the M members of the set {!hz . Thi; definition ie expreesed
by Bquation 2,1, where the metric d( )-—ths method of measuring distance
between two points—is loff';napecitied. .

s (p, gFm}) - 3 é ¢pEp).° (2.1)

To deserve the name metric, the function d( ) must satisfy the€ usual

conditions stated in Equation 2.2 a, b, ¢ and d.

14
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d(a,B) = d(B,A) (symmetric function) (2.2a)
d(a,c)< d(r,B) + d(B,C) (triangle inequality) (2.2v)
aw,B 20 . (non-negative) (2.20)
d(A,B) » 0 if, and only if, A= B (2.2d)

2,2 Optimization and Feature Weighting
In the definition of similarity of the preceding section the

average distance between a point and a set of points served to measure _
similarity of a point to a set, The method of measuring distance, however,
vas left unspecified and was understood to refer to distance in perhaps some
abstract property of the set, In this section the eriteria f_or finding

the "best” choice of the metric are discussed, and this optimization is
applied to a specific and simpie class of metrics which has interesting

and useful properties. .

Useful notions of "best" in mathematics are often associated with
finding the extrema of the funotional to be optimized., We may seek to
minimize the average cost of our decisions or we may maximize the probability
of estimating correctly the value of a random variable. In the prohl'em '
above, a mseful metric, optimal in one sense, is one which minimizes the.
average distance.between members of the same set subjfect to ceriain suitable
constraints devised to assure a nontrivial solution, If the metric is
thought of as extracting that property of the set in which like events
are clustered, then the aver;ge distance between members of the set is a
measure of the size of the cluster so formed. Minimization of the average

distance is then a choice of a metric which minimizes the size of the cluster

15 .
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and therefore extracts that property of the set in which they are most alike,

It is only proper that a distance measure .m'n mininize the averags diltlm;

between thou events vhich are selscted to exemplify events that are "chu'
Although this preceding eriterion for finding the best oohucn

is a very reasonadle and meaningful assumption on which to base the speciai

theory, it is by no means the only possidbility, Minimisation of the maximm

distance between members of a set is just one of the poc.liblo alternatives

that immediately mgu;stn itself. It should be pointed out that ultimately

the best solition is that which results in the largest number of correct

clagsifications of events, Making the largest number of correct decisions

on the lmown events 1s thus to be maximised and is itself a suitable

criterion of optimisation which will be dealt with elsevhere in this report,

Since the primary purpose of this chapter is to outline a point of view

regarding pattern recognition through a special example, the choice of

"best" previously desribed and stated in Myuation 2,3 vill be used, for

1t leads to very useful solutions with relative nilplicit): of the mathematics

involved, In Equation 2.3 Fp and Pm are the pth and nth members of the

set gtmg . ) . .

mn mp’j;)- Po® o min Hu}:_n[ng %d(? F )} , over 11.1‘ choices

p=1 (2.3)

of d( )o

Of the many different mathematical forms whish a metric may
take, in the special theory here _described only metrics of the form given
by Equation 2,4 will be considered. The intuitive notions underlrlng
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the choice of the metric in this form are based on ideas of "feature
woighting® which will de developed below.

a,s) = \/ 5 wf( -v )2 (2.h)

In the femiliar Buclidean N-dimensional space the distance between
the two points A and B is defined by Equation 2,5, If A and B are
expressed in terms of an orthonormal coordinate system zOn} , then d(A,B)
of Equation 2.5 can be written as in Bquation 2,6, where a,andb,
respectively, are the coordinates of A and B in the direction of On.

a,B) =4 - ], B (2.5)

d(A,B) = v eb)?, ) .
(&,B) ‘/g(‘n » 2.6)

e must realize, of course, that the features of the events

represented by the different coordinate directions 8, are not all equally
import;nt in influencing the definitio_n of the category to ‘which like events
belong. Therefore it is reasonable that in compa,r:l:ng two points feature

by feature (as is expressed in Equation 2.6), features with decreasing
significance should be weighted with decreasing weights "n' The idea of
feature weighting is expressed by a metric somewhat more general than the ‘
conventional Buclidean metric., The modification is given in Equation 2.7,
where Wn i3 the feature weighting coeffici.ent.
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d(A,B) \/g [wn (a,, - bn)J 2.' (2.7)

It is readily verified that the nbove nmetric satisfies the conditions stated
in Equation 2.2 if none of the "'1 's is zeroj if any of the '.in coefficients
is zero, Bguation 2,2d is not sntisfied,

I¢ 1is important to note that the above metric gives a numerical
measure of "closeness" batween two =oints, A and B, which is strongly
influenced by the narticular set of similar eventa iF‘ mi o This is a logical
result, for a measure of similarity betwecen A and B should depend on hou
our notions of similarity -sare shaped by the set of events kmowm to be
similar, V“hen we deal with a different set of events which have different
similar features, our judpgement of similesrity between A and B will also
be based on finding agreement bet-zen them along a changed set of their
features,

An alternate and instructive way of explaining the significance
of the class of metrics given in Equation 2.L is to recall the analogy
made in the Introduction regarding transformations of the signal space.
Thers, the préblem of eﬁressing vhat was similar among a set of events
of the same category was accomplished by finding that transformation of the
signal space (again, subject to suitable constraints), which will cluster
most highly the transformed events in the new :fpace. If we restrict
ourselves to those linear transformations of the signal space which involve

only scale factor changes of the coordinates and if we measure distance

18
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in the new space by the Euclidean metric, then the Euclidean distance between

two points after their linear transformation is equivalent to the feature

weighting metric of Equation 2.i. This equivalence is shown below, ¥here

A! and B! are vectors obtainsd from A and B bty a linsar transformation, |
The most general linear transforriation is expressed by Bjuation 2.9, vhere

a'n is the nt_-h coordinate of the transformed vector A and b'n is that

of the vector B,

Aew a0 and B e b e (2.,8a)
gnp gnn

(] - (] (] - [e]Iv} (2.8b)

po-of - -4 e

. . . vnvlz. o o'm

[(ai-bi) »(85-b3),eee, (l.}"-bf‘i . [(al-bl Way=by)se sy (lrhd Wpq¥ape e s¥oy (2.9)

{vmwjn oo o'm

The Buclidean distance between A' and B!, d (A1, B'), 1is given in Equation

2,10,

1 2 L}
dE(A',Bv) -/é; (.!n_h_'n)z .\/ntzlg L (.aa-b’) ’ . (2.10)

" 19
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If the linear transformation involves ou‘J; scale factor changes of the
coordinates, only the elements cn the main diagonal of the W matrix m
non-zero, thus reducing dg(k' , B'), in thie special case, to the form
given in Equation 2,11.

v

Spectal dg (A', B') = \/nﬂ_ v 2, -v)% . " (2.11)

The sbove class of metrics will be used in Bquation 2,3 to minimize the
average distance between the set of points, Because of the mathematical
difficulty of minimizing the sum of square roots of quantities, we will
minimize instead the mean-square distance when members of il’ns are
compared with each other,

The mathematical formulation of the sbove minimization is given
in Equations 2,12a and 2;12b, The significance of the constraint 2,12b
is, for the case considersd, that every weight w . is a nunber between
‘0 and 1 (vm'u turn out to be positive) and it can be interpreted as-the
fractional value of the features en vhich they weight, L denotea the
fractional value which is assigned in the total measure of distance to the

degree of agreement that exists between the components of the compared

vectors,
e ol ﬁw 2(¢ -2 )2 = mint
M-Iy L{&t & mn o Tpn T, (2.12a)

. ’ @ m
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i -1, ‘ (2.12b)

4
L]

Although the constraint of 2,12b is appealing from a feature-
weighting point of view, from a strictly mathematical atln}boint 1% leaves
much to be desired. It doos not guarantee, for instance, that a simple
shrinkage in the size of the signal space is disallowed. Such a shrinkage
would not change the relative orientation of the points to each other,
the property really requiring alteration. The constraint given in
Equation 2,13, on the other hand, states that the volume of the cplco. is
constant as if the space were filled with an incompressible fluid, Here
one merely wishes to determine what kind of a rectangular box could cmntain
the space so as to minimize the mean-square distance among a set of points
imbedded in the space.

.

N .
w - 1. (2.13)
T o .

The minnnizati;n problem with both of these constraints will
be worked out in the following equations, and it will.be seen that the
results are quite similar, . .

Interchanging the order of summations and expanding the squared
expressior.x in Equation 2,12a yields Equation 2.1, whege it is recognized

2

that the factor mltiplying w_© is the variance of the coefficients of the

en coordinate, Minimization of Equation 2,1k under the constraint 2,12b.
[ ]

[ [ ]
ylelds Equation 2,15, .where P is an arbitrary constant, Imposing contraint
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2,12b again, we can sclve for w_, obtaining Squation 2,14,

nn
.k ?i 2[1 i 2,13, lfi 1¢
D" = - “w 'y + I "2( L )( f ) 2,
(F-IT &4 “mn [0 &4 “mn ﬁp-l pn R&y “an Hp_ pn (2.,24)
= » 2 u N
2 L2y 2 .2 gt
DT gyt Cr TR T e
2 1 )
["nn a;l —ﬂ]‘ o. 'fo.’l‘ Nns= dy 2. soey I!O (?015)
W < / > 1 P A;
mn ?—n? 0_n2 X 1 * (2013’
= o.p

That the values of “on 59 found are indsed those “hich minimize

-

D° of Equation 2,12a can be seen by noting that ;)? is an elliptic para~

boloid in an N-dimensional space and the constraint of 2,12b is a plane
of the sa:ne.: dimensions, For a three-dimensional case, this is illustrated
in Figure L. The intersection of the dliptic paraboloid with the plane

is a curve whose only point of zero derivative is a minimum.'

The phvsical interpretation of weighting features by the
reciprocal of their variances is given helow,

If the variance of a coordinate of the ensemble is "1arge, then
the corresponding Yoo is small, indicating that small weight is to be given
in Phe overall measure of distance to a feature of large variation, If the
variance of the maqm':tude of a given coordinéte Gn is small, on the other

hand, then its value can be agcurately anticipated; therefore en should

be counted heavily in a measure of similarity. It is important to note

22
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PLANE |

D? = MINIMUM

ELLIPTIC PARABOLOID

Figure 4. Geometric Interpretation of Minimization -

23
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that in the extreme case, where the variance of the ragnitude of a component
of the set is zero, the corresponding v in Equation c.15 is equal to
unity with all other wnn's equal.to zero. In this case, although Eouation
2,11 is not a legitimate netric since it doos not satlsfy Huation
2,2, it is still a meaningful measure of similarity. If any coordinate
occurs vith ide;tical magnitudes in al} members of the sot, then it is
an "all important" feature of the set and nothing else needs to be
considered in judging the events similar. Judging membership in & category
by such an "all important" feature may, of course, result in the incorrect
inclusion of nonmembers into the category. For instance "red, nearly
circular figures" have the color red as a comnun attribute., The trans-
formation described thus far would pick out "red" as an all important
feature and would judge membership in the category of "red, nearly
circular figures" only by the color of the compared object. A red square,
for instance, would thus be misclassified and judged te be a "red, nearly
circular figure". Oiven only examples of the catesory, on the cther hand,
such results would probably be expected. later on, however, “here
labeled'exam;les of all catepories of interest are assumed given, only
those attributes are emphasized in which members of & category are alike
and in which they differ from those of other categories.

It should be notsd that the weighting coefficients do not nec-
essarily decrease monotonically in the above feature welghting which
minimizes the mean-square distance among M given examples of the class,

Furthermore, the results of Equation 2.15 or 2.18 are independent of the

24
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particular orthonormal system of coordinates. Bquations 2,15 and 2,18

simp)y state that the weighting coefficient is inversely proportional to

the variance or to the standard deviation of the ensemble along the

corrosponding coordinate, The numerical values of the variances, on the

other hand, do dopond on the coordinate system.
If we use the mathemtically more appealing constraint of

Equation 2.13 in nlace of that in 2.12b, ve cbtain Zguation 2.17,

2 2 2 .
rdn D° = min 2 é M. Oy T 77. i M 1; (2.17a)

o) 3
i dvr, - ['-.'m 7 - 1’77 wkk]- 0. (2.170)
ne kfn

It is readily seen that by applylng Zquation 2.17a, the expresnic'm
of 2.1 is equivalent to Eguation 2.10a, *here the bracieted expression
must be zero for all values of n, This substitution leads to Bquation 2.18b

which may be reduced to Equation 2.18¢ t; apslication of Zquation 2.17a cnce

more.,

2
g dw, (wnn o - %— ) =0 (2.18a)
n=1 nn
Voo " gﬂ - (2.18b)
25
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N 1/h
- z’ c l— (2.18(:)
o p=l p Sn

Thus it is scen that the feature weighting reeffizient L is
L]
proportional to the reciprecal stinlard deviation of the n"h coordinates,

thereby lending itself to the sase kind of interprotation as before.

2.3 Describing the Catepory

The set of ¥no'm -e=b rs i5 the best Aescription of the sategory.
Folloving the practice of nrotability theory, this sot of similar cwsnts
can be described by its strtisiics; the ensenble meaw, variance, and
higher moments can be specificd as its characteristic prcperties. For
our purposes a mere suitahle -escrintien of our idea of the category, on
the other -and, i3 found in t=e specific form of the function S of
Equation 2.1 develoned frem the set -7 sinilar events to measure rertership
in the ceterory. a marled disadvantage of S is that @n 2 nachine -“icen

*
implements its application) the azount of storage capacity ~hich must be

available is w=ronortional to *the nushber of events introduc=d a=g

is bLaus
a groving quantity, For this reason a -escripticn of ths set of ,:-«.)ints
is desired in the form of a noint E ishich may be considerzd mcst typical
of the ensemble of points telonging to the set. Describiing the nale -ory
by means of a single point is analeprus to designating a particular
capital A as characterizing the sat <f %i..f‘f‘nrent capital A*s that are
encountered. This single A ta'es t™: place ol the entire enserble of A'a

and represents it by being the typifying examnle of the set. The most

important attribute to the ty~ifying example, from the poirt cf vier of

26
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correctly reprosenting the set, is that the "distance” measured between

an arbitrary point P and E should agree with the moan-square distance
measured by the function S betueen P and membors of the set. The distanco.
in both cascs is rmeasurcd with the =ciric developod in the preceding section,
The equality of these distances is stated in Zguation 2.1, vhere °n is

the coordinate of £ in the an diroction and Py ia the coordinate of P in

the sare direction.

oo " . A

1 I o Y S
345, [Fﬁ} o g gg; ;;; ¥y By - Ly v "a V¥ on) y (2719)

0
interchanging the order of cuwwraticns, exmanding the squaras, and cellecting

Uke terms yields Zg1ation 2,20,

y
n; _dnz [en2 2 - 7 ,)J* 0. _ (2.20)
This equation does not have a unig:e solvtion unless further constraints
are imposed. A convenient set of ccnstraints is the requirement that
the above equality hold for any choice cf the metric., This can be

sho'm to mean that the equation must hold for each n. Under this constraint

the unique solution for E is given oy Iguation 2.2la and 2.21b,

E= :%: e 8 , (2,21a)
n=1
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xhere ——— -
2 s Ry 2"
V/pn - 2, Iy " Pyl /Qpn'fn) *Tq (2'21§)

The interesting aspect of this result is that the cholce of the
typifying vector B depends on F, the veclor to be compared to the set.
This fact does not render B any less simudficant, Instead cf comarisg
P uith every member of the sob, as in Eymtion Z,7, it is equivalent
to compare it itk I, given in Equation 7,21, The sect of kn>m -enhers
of the category appears in E as the ¢ongtants ;;? and T; , Wnich nay be
computed once and for all, This fact has important irplications regarding
the amount of information rhich must be sterad, In the comparison of an
arbitrary point P *rith the et i?___i by -eans of the function S{F, {an Iy

,all ! members of the sot muat be storsd, each having ¥ cocrdinates, The
total stored information about the aor is thus M numbers, In the

comparigon of P ~Ath &, 2n the othar haiy, the tetal storape is only 2N

numbers,

2.4 Choosing the Optimia Orthognial Coordinate Sysiem

The labeled rvents “rhich helong to one catepory have bren

assumed given ag vectors in an a priori selected coordinate system which

expressed features of the events thougal rele il o lhe determination of

the category. An optimum set of feature wveighiing coefficients vere then I~
found through vhich similar events could be judged most similar to one

another, It would be purely coincidental, hevever, if the features i

represented by the given coordinate system -rerc optimal in expressing
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the similarities among renmbers of the set. In this section, tharefore, we
look for a new set of coordinates, spanning the same space, and expressing
a differant set of features hich mininize the mean-square distance
betunen menbers of the set, The rroblem just stated can be thought of as
either enlarging the class of retrics considered thus far in the measure
of similarity defined earlier or as ealarging the class of transformaticns
of the space within shish class ~o look for that particular trarsformation
uaich minimdzes the rean-square distarce betvween simllar events,

It a8 proved earlier that the linear transformation which changes
the scale of the nt:'1 dimension of the upace ty the factor “nn while-
keeping tre volure cf the space constant and minimizing the rsan-square

distance betucen the trursfermed vectors is given by Equation 2,22,

Frow P, -mers [W] n o o (2.223)

0 Yine

and | (2.221)

The mean-square distance under this transformation is piven by Equation

2.22 and is a minimum fer the given choice of orthogonal coordirmte system,

D2 = 1 ﬁ ﬁ' ZN: w 2 (f - f )2 = minimum (2.23)
m p, mgl n=’1 nn mn pn
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It 1s possitle, however, to rotate the coordinate system until one is
tor;nﬁ which uxdnd:zoa the above minimum mean-square distance, Whereas
the first minimdzation took place vith respect to all choices of the
Y,n'®s Ve are now interssted in further minimizing this by first rotating
the coordinate syetem so that the above optimum choice of wm'l should
resuit in the absoluts minimum distance between vectors, The solution
of the above search for the cptismum transformation may be comln;entiy
stated in the form of the following theorem.

Theoren

The linsor transformation which, after transformation, minimizee

_the mean-squars distance between a set of vectors, subject to the

constraint that the volume of the space is invariant under transformation,
1s a rotation [C] followsd by & diagonal transformation [w] « The rovs
of the matrix [0] are eigenvectors of the covariance matrix [U] of tﬁo
sst of veoctors, and the elements of [W]m those given in Equation 2.22b,
where a‘p is the standard deviation of the coefficients of the set of

th

vectors in the direction of the p~ eigenvector of IU] .

The proof of the above theorem is readily obtained as follows,

Proof
Expanding the square of Equation 2,23 and substituting the

values of w . results in Huation 2.2 which is to be minimized over all

choices of the coordinate system,

UNCLASSIFIED
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2 by Z"l' wm""ﬁ‘ > (ol * Lon” = 2 Lonfon) (2.2la)
ne

pel me=l
2M 2 7T a2 M 2 2
=) é;"nn (4 *T;)'m:rr%'m a, (2.2Lb)
1/N
2 2. M 2 t
mn_l 7% = ey 2 [p-la;] (2.2hc)

Iet the given coordinate systen be transformed by the matrix [C] .
[cl,l 012 [ X X ) OlN rl 2
[c]. 2% 0?2 see Cop |9 where nz._;cpn =1 for pel, 2, ... N.

Cin S oo Can (2.25)

L -

Equation 2,24 is minimized if the bracketed expression in Equation 2.2kc
is minimized, The latter may be named IB and written as below.

L ﬁ o 771[ ﬁ' (e1,)? - (HZ’ ) )2] (2.26a)
p- n\u
where
N
f'mp = nig]‘- fmn Cpn. (2.26b) L

Substituting Bjuation 2,26b into 2.26a, we obtain Equation 2,27, where

the averaging 1s understood to be over the set of M vectors,

- 79’ f i’ mf' £ ninsCpn®ps -(n%: rncpn)z]. (.2.2';) —_

p=l | nsl s=l 1
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The squared expression may be written'as a double sum and the entire equation
simplified to 2.28,

P-lni-:;-- Gofa = fa) pn pu 2.28)

But (2.1 -£f)=u = U,, 1s an clement of the covariance matrix [U] .

Bance

3 - '/9' é g UnsCpnps® (2.29)

P=l n=l

Using the method of Lagrange multipliers to minimize B in
Bquation 2,29, subject to the constraint of Equation 2.25, we obtain
Equation 2,30 below as the total differential of (3 + The differential
of the constraint, 7 » 18 given in Buation 2,31,

4811010 i) é 2 L /A rg é_’; nsCpnC pa] (fi X abiza%b)d" 0.

(2.30)

d s 2 f c, dc =0 for 1. 1, 2 [y} N. 2. 1
x‘ g-l 18 28 ’ . ’ ] » ( 3 )
In the way of an explanation of Equation 2,30, it is seen that when Equation
2,29 18 differentiated with respect to clq » then all the factors in the
product in Equation 2,29, where p # £ » are simply constantd, Carrying out

R

the differentiation stated in Equation 2,30, we obtain
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! ‘ [ T
wﬂgg dc‘g éc‘bugb Z&; ggumcpncp’ = 0, . (2.32)

<
Let ;?z- 2 él haCprCps hpo (2.33)

llote that since p l-{, Al is just a constant as recgards optimization of

any Cl x*
In accordance with the method of Lagrange multipliers, ocach of the

W constraints of Equation 2,71 is multiplied by a different arbitrary constant

Bl and ls added to dﬁ as shown below,

af + g Bld&' =0 -gédclg (gclb"gb)ﬁl + By ‘e |" 0. (2.3h)

By letting - ﬂl = By /hy and by recognizing that dc!q. is arbitrary, we

get

N
‘bZ'l TG )iczg =0, for gsl, 2, ..., Nand f=1, 2, ..., N. (2.38)

" Let the (th rovw of the [C] matrix be the vector Cl . Then the above
equation may be written as the eigenvalue problem of Equation 2,34 by

recalling that = o
ac g uqb ubq

cz [U-Ll I‘]= 0, for f=1, 2., veey N, (2.36)
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Solutions of Equation 2.36 exist only for N specific values of 2(.
The vector C 7 is an eipenvector of the covariance matrix [ U] . The eigen-
values ﬂl are positive and the corresponding eigenvectors areo brthogoml
since the matrix [ U] is positive definite. Since the transformation [c]
is to be non-singular, the different rows C ¢ must correspond to different
eigenvalues of [ U] o It may be shown that the only extremun of 8 is a
minimum, subject to the constraint of Hjuation 2,25. Thus the optimum linsar
transformation vhich minimizes the rran-square distance of a set of vecters
“hile keeping the volume of the space constant is given by Equation 2,37,

vhere rows of [C] are eigenvectors of the covariance matrix [U].

i . T ar 1

81820 81N| |C11%12°Can 1 ¥11°11 Y22%21 *** Ymfm
Sa122cton| |C21022++Can|| %2, | ["11°12 2of22 *** e

[ ] [ ] [ ] [ ] L] e o [ ) [ ] [ ] [ ] L] LN ) .", ® L] e 2 0 L] ® o 09 L] L ] [ X ] (2.37)

The numerical value of the minimum mean-square distance may now

be computed as follows, The quantity 5? was given in Equation 2,24c which

is reproduced here as Bjuation 2,38. .

— N 1/n
D = gy 2N [7]' a'pz} - gm0 238
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Substituting/B from Bquation 2,29, we obtain Equation 2,29,

i . 1/8
. ’(»“:f‘!—T)' 2!5[1]; ﬁ' E,L up_sc?ncps] . (2.39)

n=)] ss=]l

But from Egquation 2,35 we see that nmin S? may be writien as below, where

the constraint 5.25 has also been utilized, .

- N 1/ 7 /u
2 M 2 ¥
min D 'mzne"[” Ap pn ] we“c.l" - o

It should be noted that the constraint cf Eguation 2,25 is not,
in general, a constant volume constraint, It is that only if the
transfomation [C] is orthogonal, as is the case in the solution just
o%tained. The set of transforrations which keeps the volume constant is
T, in Figure S A subset of these are the orthogonal transformations T,
of constant volume, of which the optirum was desired. The solution presented
here found the optimum transformation among a set of TL which contains
orthogonal transformations of constant volume but is not necessarily constant
volume for those which are non-orthogonal, The solution here given,
therefore, is optimum among the constant vclume transformations Tv(1 TL
shown shaded in Figure 5, This intersection is a larger set of trans-

formations than that for which the optimum was sought,

Figure 5. Sets of Transformations
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The rethods of this chapter are optirmal in neasuring rembership
in categories of certain types. Suppose, for instance, that categories are
statistically independent randes procecnses ‘thich gererate resbers ‘rth multi-
variate Gavssian probability distrivulions of uninom means and variances,
Elseuhere it is shown that the metric develsped hore measures contours of
equal a postericri proba®ilities, Given *he setl of labeled events, the metric
specifies the locus of points thich are members of the category in questien
with equal probability,

Bafore bringing this chapter to a conclusion, the important
concepts introduced here +will be sumnarized,

Categorization, the tasic problen of pattern recognition, fs
regarded as the process of learning hov to partition the signal space into
reglons where each contains points of only one category. The notion of
similarity between a noint and a set <f noints of a category plays a domirant
role in the partitioning of signal space, Similarity of 2 point to a set of
points is regarded as the averepge "distance" between the point and the set,
The sense in wthich distance is understood is not specified, but the optimum
sense is thought to be that which (by the optimum methed of measuring distance)
clusters most highly those points which belong to the same categery. The mean-
square distance between points ~f a catepery is a measure of clustering, An
eduivalent altrrnate interpretaticn of similarity (not as reneral as the inter-
pretation above) is that the transformaticn which optinally clusters like roints, -
subject to suitable criteria to assure the non-triviality of the trans’ormations,
is instrumental in exhibiting the similarities between points of a set, 1In
particular, the optimum orthogonrl transformation and hence a non-Euclidean
method of measuring distance is found which minimizes the mean-square distance

between a set of points, if the volume of the space is held constant to assure
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non-triviality, The resulting measure of similarity between a point P
and a set {Fn; is given in Bquation 2,h1, where a . is given the Theoren

of this chapter,

nel |s=)l

b > |2
S(P, {Fm;) “n Z
ne
To facilitate the instrumentation of corputations of the function S, a
typifying example E of the set 1s developed which sets an upper bound on
the nacessary information storage at 2X, numbers, where N is the number

of dimensions of the space in which the points are represented,

UNCLASSIFIED
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3. CATHGORIZATION

3.1 The Process of Classification .

Pattern recognition consists of the twofold task of "learning™,
on one hand, what the category or class is to which a set of events belongs,
and of deciding, on the other hand, whether a new event belongs to the
category or not. In this chapter details of the method of accomplishing
thege two parts of the task are discussed, subject to the limitations on
recognizable categories imposed by the assumptions stated earlier.

In the following section two distinct modes of operation of the
recognition system will be distinguished. The first of these consists of
the sequential introduction of a set of events, each labeled according to
the category to which it belongs. During this period, identification of the
common pattern of the inputs which allow their classification into their
respective categories is desired. As part of the process of learning to
categorize, the estimate of what the category is must also be updated to
include each new event as it is introduced. The process of updating the
estimate of the common pattern consists of recomputing the new measures of
similarity and the typifying examples of the sets so that these will include
the new, labeled event on which the above quantities are based,

During the second mode of operation the event P to be classified

is compared to each of the sets of labeled events by the measure of simi-

,
larity found best for each set. The event is then classified as a member
of that category to which it is most similar.
It is not possible to state with certainty that the pattern has been =~

successfully learned or recognized from a set of its,examples, bacause
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information is not available on how examples were selected to represent the
class. Nevertheless, it is possible to obtain a qualitative indication

of how certain we may be of having obtained a correct method of determining
nembership in the category from the ensemble of similar events. As each new
event is introduced, its similarity to the members of the sets already pre-
sented is measured by the function S defined in the preceding chapter. The
magnitude of the number S indicates how close the new event is to those
already introduced. As S is refined and, with each new exanple improves

its ability to recognize the class, the nunmerical measure of similarity
between new examples and the class will tend to decrease, on the average.
Strictly speaking, of course, this last statement cannot be true in general.
It may be true only if the categories to be distioguished are separable by
functions S taken from the class wh:i'.ch we have considered; even under this
condition the statement is true only if certain assumptions are made re-
garding the statistical distribution of the samples on which we learn. Since
we have no a priori knowledge regarding the satisfaction of either cf these
two requirements, the convergenmof the similarity as the sample size is
increased is simply qualitative wishful thinking whose heuristic justifi-
cation is based on the minimization problem solved in developing S.

Figure 6 illustrates the mechanization of the learning and recogni-
tion modes of the special classificatory process discussed so far. For the
sake of clarity, the elementary block diagram of the process is shown to
distinguish only between two categories of events, but it can be extended
readily to distinguish between an arbitrary number of categories. It should

be noted that one of the categories may be the complement of all others.
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The adnissiun of such a category into the set is one of the ways in which
a machine which is always forced to classify cvents into known categories
may be made to decide that an event does not belong to any of the desired
ones; it belongs to ‘the category of “everythinmg clse". Samples of “every-

thing clse” must. of course, be given.

] r 1

DEVELOP | g () |COMPUTE 3 DEVELOP
METRIC FOR [ 8~} ¢ (p g ) 2 Ea S, (P)

{am)

INPUT
o
0

DEVELOP dgl ) | COMPUTE Es | peveLor

' METRIC FOR |—0" —— Sg (P}

g ‘P
| s I
| I |
) ]
'——-——-——-——4———0\0————-—-——-—-—-4- ———————— -

Figure 6. Elementary Block Diagram of the Classification I'rocess

During the first mode of operatio::, the input to the machine is a
set of labeled cvents. Let us follow its behavior through an example. Sup-
pose that a number of events, some belon;ing to set A and sonc'to s¢t B, have
already been introduced, According to the nethod described in the previous
chapter, therefore, the optimum metrics (one for each class) have been found
vhich minimize the mean-square distance between events of the same set.
Similarly, the best exemplars of the sets have also been found. As a new
labeled event is introduced (say, .it belongs to set A), the switch af; the

input is first turned to the recognition mode R so that the new event P may be
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compared to set A as well as to sct B through the functions -

S,(P) = S(p, {An\) = §,(P.B,) and S(T) which were computed before the intro-
duction of P. The comparison of SA"SB with a threshold K indicates whether
the point P would be classified correctly or incorrectly from knowledge a-
vailable up to the present. The input switch is then turned to A so that P,
which indeed belongs to A. may be included in the computation of the best
netric and exemplar of set A.

When the next labeled event is introduced (let us say it belongs to
set B), the input switch is again turned to R to test the ability of the
machine to classify the new event correctly. After the test, the switch
is turned to B so that the event may be included among the examples of set
B and the optimum function SB may be recomputed. This procedure is repeat-
ed for each new event, and a record is kept of the rate at which incorrect
classifications would be made on the known events. When the training period
is completed, presumably as a result of satisfactory performance on the se-
lection of known events, the input switch is left in the recognition mode,
3.2 Learning

"Supervised learning” takes place in the interval of time in which
examples of the categories generate enseuwbles of points from which the de-
fining features of the classes are obtained by methods previously discussed.
"Supervision" is provided by an outside source such as 8 human who elects to
teach the recognition of pattern by examples, and who selects the examples
on which to learn,

"Unsupervised learning”, by contrast, is a method of learning without

the aid of such an outside source. It is clear, at least intuitively, that
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the unsupervised learning of membership in specific classes cannot succeed
unless it is preceded by a period of supervision, during which some concepts
regarding the characteristics or classes arze established, A specified degree
of cextainty concerning the patterns has been achieved in the form of a suf-
ficiently low rate of aisclassification during the supervised learning
period. The achievement of the low misclassification rate, in fact, can

be used to signify the end of the learning period, after which the system
which performs the operations indicated in Figure 6 may be left to its own
‘devices., It is only after this supervised interval of tinme that the system
may be usefully eaployed to recognize, without outside aid, events as be-
longing to one or another of the categories.

Throughout the period of learning on examples, each example is in-
cluded in its proper set of similar events which influence the changes of the
measures of similarity. After supervised activity has ceased, cvent; intro-
duced for classification may belong to any of the categories; and no outside
source informs the machine of the correct category. The machine itself,
operating on each new event, however, can determine, with the already quali-
tatively specified probability of error, to which class the event should
belong. If the new event is included in the set exemplifying this class,

the function measuring membership in the category has been altered. Un-

supervised learning results from the successive alterations of the metrics,
brought about by the inclusion of events into the sets of labeled events
according to determination of class membership rendered by the machine itself,
This learning process is instrumented by the dotted line in Figure 6 which,

k2
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when the learning switch L is closed, allows the machine's decisions to
control routing of the input to the various sets. . *

To facilitate the illustration of some implications of the process
described above, consider the case in which recognition of -e;bership in a
single class is desired and all the labeled events are members of only that
class. In this case, classification of events as members or nonmenbers of
the category degenerates into the comparison of the similarity S with a
threshold T. If S is greater than T, the cvent is a nonmendber; if S is
less than T, on the other hand, the event is said to be a member of the class.
Since the machine decides that all points of the signal space for which S is
less than T are members of the class, the latter, as far as the machine is
concerned, is the collection of points which lie in a given region in the
signal space. For the specific function S of the previous ch;pter. this
region is an ellipsoid in the N-dimensional space.

Ungupervised learring is graphically illustrated in Figure 7, The
two-dimensional ellipse drawn with a solid line signifies the domain D1 of
the signal space in which any point yields S<T. This domain was obtained
during supervised activity. If a point P1 is introduced after supervised
learning. $0 that P1 lies outside Dl' then P1 is merely rejected as a non-
member of the class. If point P2 contained in D1 is introduced, however,
it is judged a member of the class and is included in the set of examples
to generate a new function S and a new domain D,, designated by the dotted
line in Pigure 7. A third point P3 which was a nonmember before the intro-

duction of P, becomes recognized as member of the class after the inclusion

of P2 in the set of similar events.

L3
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Pigure 7. Unsupervised Learning

Although the tendency of this process of "learaing” is to perpetuate
the original domain, it has interesting properties worth investigating. The
investigation of unsupervised learning would form the basis for a valuable

continuation of the work presented herein.

Before leaving the subject of unsupervised leaming, it should be
pointed out that as the new domain D, is formed, points such as P, in
Pigure 7 become excluded from the class. Such an exclusion from the
class 1s analogous to “"forgetting" because of lack of Eepetition. Forget-
ting is the characteristic of not recognizing P4 as a member of the class,

whereas at one time it was recognized to belong to it.

3.3 Threshold Setting

In the classification of an event P the mean-square distance between
P and members of each of the categories is computed. The distance between

P and members of a category C is what we called "similarity”, SC(P), where

5 the ngense" in which "distance" is understood depends on the particular cate-

gory in question. We then stated that, in a manner analogous to decisions

L
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.

based on maximum likelihood ratios, the point P is classified as a member of
the category to which it is most similar. lence, P belongs to category C if
SC(P)é Sx(P). where X is any of the other categories.

Since in this special theory the function SC(P) which measures
meabership in category C, was developed by maximally clustering points of C
without separating them fzom points of other sets, there is no guarantee,
in general, that a point of another set B may not be closer to C than to B.
This is guaranteed only if points of the sets satisfy certain conditions which
will be stated below. A graphical illustration which clarifies the com-
parison of similarities of a point to the different categories is shown in
Figure 8. In this figure the elliptical contours SAI(P). SAz(P). etc.,
indicate the loci of points F in the signal space which are at a nean-square
distance of 1, 2,...,etc., from nenbers of category A. The loci of these
points are concentric ellipsoids in thec N-dimensional signal space, shown
here in only two dimensions. Similarly, SBI(P). SBZ(P)..... etc., an&
SCI(P)' SCZ(P)..... etc., ace the loci of those points whose mcan-séuarc
distance from categories B and C, respectively, are 1, 2,..., etc. Note
carefully that the sense in which distance is measured to each of the cate-
gories differs as is indicated by the differcnt orientations and eccentrici-

ties of the ellipses.
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Figure 8, Categorization

The heavy line shows the loci of points which are at equal mean-squarc
distances to two or more sets according to the manner in which distance is
measured to each set. This line. therefore, defines the boundary of each of
the categories.

At this point in the discussion it would be helpful to digress fron
the subject of thresholds and dispel some misconceptions which Figure 8
might create regarding the general nature of the categories found with the

-

method described herein, It will be recalled that one of the possible
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ways in which a point not belonging to either category could be so classified
was by allowing a separate category for “evex‘rthins else" and assigning the
point to the category to which its mean-square distance is smallest. Another,
perhaps more practical, method is to call a point a meaber of neither category

~ if its mean-squarc distance to the set of points of any class exceeds some
threshold value. If this threshold value is set, for exanple, at a mean-
square distance of 3 for all of the categories in Figure 8, then points

belonging to A, B, and C will lie inside the three ellipses shown in Figure 9.

Pigure 9., Categorization with Threshold

It is readily °seen, of course, that there is no particular reason why

gy
one given mininum mean-square distance should be selected instead of another;
or, for that matter, that this minimum distance be the same for all cate-
gories, Manylogical and useful criteria may be selected for determining the L
optimum threshold setting. |Illere, only one criterion will be singled out as
k7
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particularly useful. This criterion requires-that the minimum thresholds

be set so that most of the labeled points fall into the correct category.
This is a fundamental criterion, for it requires the system to be deilgned to
work best by making the largest number of correct decisions.

The criterion of selecting ‘a threshold to make the most correct
classifications may be applied to our earlier discussion where the boundary
between categories was determined by equating the similarities of a point
to two or more categories. In the particular example of Figure 6, where a
point could be a member of only one of two categories A and B, the difference
SA- SB = O formed the dividing line. There is nothing magical about the
threshold zero; one might require that the dividing line between the two
categories be SA- SB = K, where K is a constant chosen from other considera-
tions. A similar problem in communication theory is the choice of a
signal-to-noise ratio which serves as the dividing line between calling the
received waveform "signal" or c¢alling it "noise"”. It is undexstood, of
course, that signal:to;noisc ratio is an appropriate criterion on which to
base dgcisions (at least in some cases), but the particular value of the ratio
‘o be ;scd as a threshold level must be determined from additional require-
ments. In communication theory these are usually requirements on the false
alarm or false dismissal rates. In the problem of choosing the constant K,

we may require that it be selected so that most of the labeled points lie v~

in the correct category.

3.4 Practical Considerations

In considering the instrumentation of the process of categorization
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previously described, two main objectives of the machine design must receive
careful ;onsidezation. The first of these is the practical requirement that
a1l computations involved in eithg: the learning or the xecogn{tlon mnode of
the machine®’s operation be performed as rapidly as possible. It is es-
pecially desiradble that the classification or recognition of a new event de
‘i;plencnted in essentially real time. The imporxtance of this requizement
if readily appreciated if the classificatory technique is considered in terms
of an application such as the automatic recognition of speech events, an im-
portant part of voice controlled phonetic typewriters. The second major
objective, not unrelated to the first, is that the storage capacity required
of the machine have an upper bound, thus assuring that the machine is of
finite and predetermined size. At first glance it seems that the instrumenta-
tion of the machine of Figure 6 requires a storage capacity proportional to the
number of events encountered during the machine's experience. This seems so
because the set of labeled events on which the computations are carried out
must be stored in the machine. It will be shown in this section, however,
that all computations may be performed from knowledge of only certain sta-
tistics of the set of labeled events, and thag these statistics may be re-
computed to include a new event without knowledge of the original set,
Therefore, it is necessary to store only these statistics, the number of
which is independent of the number of points in the set. °

It will be recalled that there are two instances where kqowledge of
the data matrix is necessary. The data matrix [F], given in Bquation 3.1,
is the M x N matrix of coefficients which results when the'M given examples

of the same category are represented as N-dimensional vectors.
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The first use of this matrix occurs in .the computation of the
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(3.1)

optimum orthogonal transformation or metric which minimizes the mean-square

distence of the set of like events,

This transformation is stated in the

Theorem in Section 2.4 and is given in Bquation 2.37 as the product of an

orthonormal and diagonal transformation.

Rows of the orthonormal trans-

formation [C) are eigenvectors of the covariance matrix [U] computed fron

the data matrix of Bquation 3.1, and elements of the diagonal matrix [l] are

the reciprocal standard deviations of the data matrix after it has been

.transformed by the orthonormal transformation [C] .

The second use of the matrix [FJ occurs when an unclassified event P

is compared to the set by measuring the mean-square distance between P and

points of the set after both the point and the set have been transformed.

This latter comparison is replaced by the measurement of the distance between

the transférmed point P and a “typical example"” of the set, as stated by

Bquation 2.19. The quantities of interest in this co;:putation. as seen

from Bquation 2.21, are the mean, the mean-square, and the standard deviation

of the elements in the columns of the data matrix gfter the orthonormal

transformation,
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Reduction of the necessary storage facility of the machine may be
accomplished if only the covariance matrix, the means, the mean-squares, and
the standard deviations of the transformed data matrix are used in the computa-
tions, and if these may be recomputed without reference to the original data
matrix, The expression of the above quantities when based on )¢l events
nay be coaputed from the corresponding quantity based on M events and a
complete knowledge of the Melst cvent itself. The method of the computa-
tions is described below.

(1) The covariance matrix of M+l events.

The general coefficient of the covariance matrix [U] of the set of

events given by the data matrix [F]is given in Equation 3.2

w =u = TT -TT (3.2)

ns sn ns rs

Note, incidentally, that the matrix [U] may be written as in Equation 3.3,
where the matrix l:l] has been introduced for convenience. As a check, let

us compute the general elenment U

J] T[F - J] (3.32)

<
St
0
k4
=
t

where [J] s 71 Fz o« o e TN ¢ (3.3b) ‘~

Ll'lrz...!'

n,

The n'? column of the [P -J] matrix, which becomes the nt™ row of its

transpose, is given in Bquation 3.4 as well as the s'th column of [F -,ﬂ .
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The product is the covariance matrix coefficient us

r'fls'?’

Yns © l%f[(fln' ?l)'(tan' Tz\‘ : '(fam" T@-b] £23' rs (3.4
N T

R uﬁ'l (cm- 7) (s 7)) =T - T, | (3.5

Now to compute the covariance based on M+l events, uns(m»:l),
it is convenient to storc the N means Tn for all values of n. It is also
convenient to store the N(N+1)/2 independent values of inls. Both of

these quantities may be updated readily as a new event is introducec. The mean
M+l

?; based on M+l events may be obtaincd from the mean based on only M
Mel
events, fn' from Bquation 3.6a and ?ris nay be obtained from Equation 3.6b.
M .
Mel M {: *fytn
r; = —K‘._.T'—— (3.63)
M
] 3
e T * fern flels P
ns M+l )

llere, the superscript of the ensemble average indicates the number of events
partaking in the averaging, and fM+1.n is the nth coefficient of the M+lst
event. We now have everything necessary to compute the new covariance
coefficients. The storage facility required thus far is N(N43)/2+1 locations,
The +1 is used for storing the number M, If thc covariance matrix is also
stored, the necessary number of storagc locations is (N+1)2; this makes use

of the fact that both [U] and [Frﬁ] are symmetric matrices.
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From the matrix [U] the orthonormal Transfor=ation [C] say be found
by solving the eigenvalue problenm Ec:[u -).I]- 0. The matrix [C] has to
be stored, requiring an additioral ::2 storaje locations.

(2) Mcan of the pth colurn of the [l] [C] - ’fl“_] .
As stated earlicr., one of the quentities of interest in the typifying

exanple is the mcan of the clemeats in a column of the data matrix after its
orthonormal transformation with [C] . The general clenent of the [l")

matrix is f'_J given tn Sguation 2.24b and 1n 3.7a. and its nean is given

in Equation 3,7v),

N
f* = Z f'_‘ = " . (3.7a)
.up m=1 it ‘p‘- )
M N N
an— 1 s
f* == _5_ f = = T ¢ (3.7b)
P i 2:;1 =1 M opn %1 n o pn

No additional storaje is required to zompute p" since all khe factors of
Equation 3.7v arc already known. An additional X locations must be made
available to store the N neans, howewver,
r
(3) Mean-square of pth colunn of ;__F'J .
- th [Fr)
The mcan-square value of clenests of the p colunn OfLFJ

is given in Equation 3.8a and b,

- M, ; MO¥ N
) e ] = -
£ N fmp M 2_ Z fmn t-mscpn Cps (3.8a)
m=1 m=1 n=1 s=1
2 N N
! ~
fp = Z § ?;Ts Son %ps | (3.8b)
n=l s=1
o3
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No additional storage is necessary for this conputation. An additional .

2
N locations, however, nust be available to store f 'p".

(4) Standard deviation of the pth colunn of [F'J.

The only remaining quantity nccessary in the instrunentation of the
recognition systen is the rcciprocal standazd drviation of the pth colunn
of [}E} , as stated in the theorem of Chapter 2. The standard deviation and
the elenents of the diagonal matrix [ﬁ] are civer by Equation 3.9, where all
the quantities are already known. An additiomal X locations are nceded to

store their values. however.

W< = L (3.9)

1
=T
pp O p /_’_ 57
fro -
p A

2
The total nuaber of storaze lozations is 2 « SN+l for cach of the

<

categories to which events may belon;., I the nunber of examples M of a
category is less than the number of dimensions N of the space in which they
are represented, the required number of storage locations is only m42 + +l.
In order to utilize this further reduction of storage and computational time,
however, the M events must be reexpressed 1n a new coordinate system obtained
through the Schmidt opthogonalization of the set of M vectors representing

.
the examples 6} the set, Tn the hecinnin. of the learning process, when the
number of labeled events is very much smaller than the number of dimensions
of the space, the saving achieved by Schmidt orthogonalization is very sig-

nificant,
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A practical remark worthy of mention is that at the beginning
of the learning process, when M is less than !, the solution of the eigen-
value problea El - AI] ® O ray be greatly sinplified by recognition of the
fact that [U]4s singular 4 NCN.  Although it is mot inmediately obvious,
neve:theless.'it is true that the non-aero eigenvalues of BJ]in Bquation
3.3a are identical to the eigenvalues of the matrix (F - J)/P - J;r as

stated below.
3 T 1 n oy T
Non-zero eigenvalues of (P = J) (F-)) = eigenvalues of (F = JI{F = J," (3.10)

The first of the matrices is an % x ¥, while the second is an ii x M matrix,
There are N-M zero eigenvalues of the fizst matrix; the computational ad=-
vantage of working with the second matrix for M<Ii is therefore significant,

A few additional remarks should be made about the nature of the solution
obtained with' the two constraints of Equations 2.12b and 2.13 . It should be
noted, first of all, that if the nunber of points in a set is equal to or less
than the number of dimensions in which they are expressed, then a hyperplane of one
less dimensions can always be passed through the points. Along any direction
orthogonal to this hyperplane, the projections of points of the set F are equal.

-Along such a direction, therefore, the variance of the given points is zero,
leading to a zero eigenvalue of the covariance matrix, This results in call-~
ing the corresponding eigenvector (the direction about which the variance is
zero), an "all important"” feature, The feature weighting coefficient wn is
thus unity or infinity, depending on which of the above two constraints were
;pplied. If the second or constant volume constraint were used, each point of

the set F used in learning would be correctly identified, and its distance to
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the set F would be zero by the optimum metric, At the same time the metric
classifics each point of another ca‘cyory G as a nonmenber of F, A new
member of category F, on the other hand, .ould probably be misclassified, since
it is unlikely that the new nenler of F w2ull mave exactly ¢he same projection
alony the cigenvector as the otiwer nemters had displayed. This misclascifi-
cation would not occur if the nunber of eample: of tihe category F evseaded
the mumber of dinensions in vhich ‘hey wers J<pressed, There arce?
scveral nethods to prevent nmisclassificavion: f{or exaaple, if the first
constraint werc applied, misclassifics?ion nf nmembers of F would not occur.
Another fact of some importance uhici should be brought to the
reader's attention is the physical significance of the eigenvectors. The
vector with the snmallest eigenvalue or largest fcature uweighting coefficient
designates that f{cature of members of thc set ig which the nembers are nmost
sinilar, This is not equivalent to thc featuzc “ich is most sinilar to
members of the set. The former is a :colution of a problem in whicl: we wish
to find a direction along which the proje. tions of the set on the average,
are most nearly the same, The second iz a salution of 2 problem ieze w2 wish
to find the direction aloég which the projoctions of +ne set are largest, on
the average. The desired direction. in ¢he first zase, is the cigen-
vector of the covariance matrix with “he smallest eigenvalue; in the second
case, it is the cigenvector of the correlation matrix [FTF:]with the largest
cigenvalue, It can be shown that the latter problem is equivalent to find-
ing the set of orthonormal functioas in whi:in a process is to be expanded so

that the truncation error, which results wien only a finite number of terms

of the expansion are retained, should be minimized, on the average. The set
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of . functions having this property are eigenfunctions of the corzelation
function of the process, and they are arranged in the order of decreasing
eigenvalues,

The isnortant concepts of this chanter will now be summarized.
Pattern recognition consists of the twofold task of "learning™, on the ome
hand. what the category is to which a set of events belongs: and of deciding °*
on the other hand, whether a new event belongs to the category or not,
“Learning”, for the simple situation where similarity to a class of things
is determined solely from examples of the class, may be instrumented in the
form of the diagram of Figure 6. In this diagram “learning” consists of the
construction of metrics or the develupment of linear transformations which
maximize the clustering of points which represent similar events., A distinc-
tion is made between "supervised learning” {learning on known examples of
the class) and "unsupervised learning" (learning through use of the machine's
own experience). In this connection it is stated that the cdnvergence of a
learning process to coirect category recognitign. in most cases, probably
cannot be guaranteed. The problem of threshold setting for partitioning the
signal space is l1ikened to the similar problem in the detection of noisy
signals, and may Ee solved as an extremuam problem, Finally., some practical
considerations of importance in the mechanization of the decision process
are discussed. It is shown that only finite storage capacity is required of
the machine which instruments the techniques, and that the amount of storage

has an upper bound which depends on the number of dimensions of the signal

space,
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b, DECISION THEORETICAL BASIS OF CATEGORIZATION TECHNIQUES

The categorization techniques outlined in the preceding sections
do not involve assumptions about the probability distributions of the
respective categories. It is instructive, however, to consider the relation
of these tachniques to the conventional decision-theoretical approach to
problems of categorization. In the latter it is assumed th#t probability
density functions for each category are known. Given such functions, it
is possible to set up optimum procedures for categorization. It will be
shown that under certain conditions the criteria developed in this report
are exactly those prescribed by decisien theory xhen the distributions are
lmown. The important fact that should be kept in mind is that the categori-
zation techniques discussed in earlier sections do not require lnowledge
of the density functionsi They provide procedures of categorization where
there is no knowledge of such distributions.

The purpose of this section is to provide a corroboration of the
techniques and to lay bare their relation to decision theory proper.
That such a corroboration should occur so fortuitously after the development
of the techniques is gratifying in that it gives support from a well- .
established mathematical theory.

In order to set down the relation between the categorization
techniques of earlier chapters and decision theory, it will be necessary to -~
state briefly some of the assumptions and results of the latter. These
results will be stated without proof since their full exposition may be found

in any text on decision theory.
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For purposes of exposition, two categories will be treated.
Generalization to K categories proceeds in a natural way, but tends to
obscure the essential simplicity of the theory. Assume, then, that there
are two categories to which it is desired to assign objects as yet un-
categorized. The only direct knowledge available about a specific object is
a set of n measurements made upon it. Furtherrore, a probabnity'denai‘ty
function for each cateogry is known such that, when integrated over a
region A of the n-dirensional space spanned by the n measurerents, it
yields the probability that an object from a given cateogry will produce
measurements falling in region A. That is, the probability that an object

from category C; is accompanied by n measurerents that fall in A is given by

S pi(x) dx
A

where pi(x) 1s the probability density function for cateogry C; and x
represents the vecbor.(xl, Xpy eeer X).

Let it also be assurmed that a priori probabilities " and Tos
are known which give the probability of occurrence of an object from

Cy and 02, respectively. The decision theory approach involves dividing
the n-dimensional space into two regions, Ry and R, such that when a set
of measurements falls in R, the object is assigned to Cl and, similarly,
vhen the measurements fall in Ry, the object is a;signed to C2.

If the a priori probabilities and the density functions are known,
then these regions may be chosen in such a way that the expected cost of
making decisions is minimized. Here, it is assumed thaé there is a cost

connected with making a misclassification. A division of n-dimensional space
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into two regicns P‘l and R2 is called a deczision procedure. The expected

cost may be written

E(K) = my Koy 5 py{x) dx + "2“12‘( py(x) dx, (L.1)
R R

where K21 is the cost of misclassifying an object from Clg and “12' that of
misclassifying an ob:‘)ect from C,. The first term of Equation (4.1) is the
expected cost due to misclassifying objects from Cy, Since pj(x) is the
;!ensity function for C;, its integration over R2 (the region where the
procedure specifies that the object be assigned to 02) gives this expected
cost, A aimilq statement may be made for the second term of Equation (L.l).

Hence (L.1) gives the total expected cost.

It is desired to choose the regions R, and R, that minimize Equation
(k.1). To determine these regions, we rewrite Equation (L4.1) in the

following manner.
E(K) = S [y %3 Py(x) = 1y Ky, Pz(")] dx + \m, Kyp pp(x) ax  (L.2)
Rz [ ]
The last term of Equation (L.2) is a positive number. Consequently,
Equation (L.2) is made smaller by choosing the region R, 8o that it contains
all (and only) those points x°such that
m Kpp py(x) - maky, pyo(x) <o, (4.3)

Thus, R, must be the region of points which satisfy

my Ky py(x) - m, Koy p,(x). 0. CL.L)
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Another way of writing Equations (h.3) and (L.b) is

pléx} > "t

R ’ (L.

1' p,lx " Xg) %)
P < "

th m \< W . . (4.6)

The optimum dscision procedure vhen a priori probabilities,

n, and mp, and density functions are known is given by Equations (L.5) and

(L.6). That is, given & sst of reasurerents x the object represented by x

is assigned to Cy or G, depending on whether x satisfies inequality (.5) or
(u.6).

Unfortunatsly, the a priori probability of occurrencs of an object
from a specified sst is seldon known. In lieu of these probabilities there
are procedures vhich psrmit determination of the regions Rl and R,. Thus,
ons might assume ths a priori probabilities to be equal, This is known
a8 & maximum lik?lihood criterion. Another criterion is to minimize the
maocd mum prdbabiiity of misolassification, This is the "minimax" criterion.
It is obtained by choosing the regions in such a manner that the expected
cost of misclassifying an object from C1 is equal to that of misclassifying

an object from Cp, 1i.6.,

[}

Ve nsxt oonsider x distributed normally vith mean py andeco~

variancs Uy whsn itina member of Cy, and msan My and covariance U? vhen
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it is a merber of C,. That is, pl(x) is given by

Py(x) = 1/2:1; 73 o - %» (x = 1) Ul":l (x - lll)' (h.7)
(2“) ’Ull *

and pe(x), by

1 1 -1 '
p,(x) = exp - 5 (X = B) U7 (x - ) (4.8)
2 (2“)1/2!\“’2' 1/2 2 2’ 72 2

The regions R, and R, as given by Zquations (h.5) and (L.6) are

1/2
$ pl(") ‘ exp - % (x-u) U] (x-u 5 (x-u,) U (x- 5 "Xy
Ry 50 " —l-gm ? 1 1 ? 2! Yy (x=Mp)> _c ¢ 1’(21

0 [U,[? oxp - 3 (x-1) (x-ul) + 3 (xohp) U3 (x-u2)< "ok12
B,1x) v [72 "1k
1

. py(x)
3ince the logarithmic mnction is monotonically increasing, the ratio —Ty may

be replaced by its logarit.hm, i.e.,

1/2 ' roal ' n,K
Rl. log ’Uz’ l [(x-ul) Ul-l (x-ul) - (x'uz) Uz (x-uz)l >/1°8 ":K;i (L.9)
] 72
1
l” (1/2 -1 K12
Ro1 log -3 [(x-ul) u,” x-ul) - (x-uz) U (x-uz)J<log = (L4.10)
IUII 1 21

It will now be shown that the regions expressed in inequalities (4.9) and
(4,10) are the same as those developed in the preceding sections for the

categorization of unlabeled objects., First, let it be noted that
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]
MUh 'Al
vhere ‘\1 is the matrix the rows of which are the eigenvéctors of Ul and Al

is the diagonal matrix of eigenvalues. Then

A, A2
TR |

and

]
-1, -1
! Al !
Likewise, when A, and A2 are the matrices o erpenvectors and eigenvalues ol Uy,

-1 A -1
= AR P
-~ Hence,

- % Ex’“l) Ul'l (x-u1)|- (x=u5) Uz'1 (x-uz)']

T % [(x'“l) "1. A-l"‘l ("'“'1)| - (x-up) "‘z|A2-1"‘? (-"“2)|J

' ' - 1 Pt o 1 -1 1 1,0
.- % (x Ay - wky )/\1 1(x Ay =k ) - (x &y = Hph2 )/\2 (x Ay"= WA, ):].

It has been shovn in the preceding sections that the transformation
2 which minimizes the mean-square distance cf the first category when vclume is

held invariant is given by

y = x “1|A1-1/2‘ (L.12)

Similarly, the transformation that minimizes the mean-square distance

of the second category is

y=x “2'/\2'1/2' (L.13)
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The function, u‘prooeribod by the techniques mentioned in this report, that
measures the similarity of a point x', as yet uncategorized, to the oatlm.
C, 1s the nemn-square dletance, after transformation, of the unlabeled point
to the pointe of category 01. This mean-square distance may be written

=50 3 B 1 et 12 .
p°(x,x,) -q %1§£(x 4, -xa,), (L.2)
where the a,'s are the eigenveotors of Al and the 7\1"3 are the eigenvalues

i
of ‘10

likewise the mean-square distance of x" to the points of 02 is

given by
50 nog , L2

vhere the b',s are the eigenvectors and the @1'3 are thes eigenvalues

of Ae. .

The decision procedure whereby the point x 1s assigned to Cl or

62 oonsists ot'observing whether
c c
Pax) L- Piax) 22K (1.26)
o, : - .
c c
Piahr) - D(x,x) LK, (La17)

where K is a rumber chossn to satisfy some criterion, (0+ges, minimization
of the false dismissal rate), )
It will be shown that the regions defined by (L,16) and (4.17) are

the same, except for additive oonstants, as those defined by (4.9) and (L.10).
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W first observe that

5

c
D!(Xg,!k) 1l - % 301 1:‘ i_i Ex’.li)z -2 *."i’k"i + (&.11)2]

R Ex at )2 -2x a' 1 + (ni)!] ’ - (4.,18)

where the averaging takes place over the category cl.

Next, observe that the variance of the rotated coordinates n'i

ia given by the eigenvalue A,., That is,

— 2
i s (xa' ) -ﬁ"_ kio (IJ019)
2
Adding and subtracting E’I ®dthin the brackets of (4.18) and employing (L.19),
we obtain *
- C n
Pl e 3L [x v ey —f‘)]

-n+ g — (x a' -.)2 (boao)

Similarly, the mean-square distance of x to the points of 02 may be written

C n
%) 2ens E ¢1T (b1, - 2, (.21)

where the averaging takes place over the points of Cz. .
If we denote the vectdr, the components of which are the means
of the components of the category Cl by ty, and the corresponding vector

for C, by ko, then the regiona (4.16) and (L417) may be rewritten as
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% n n
e i ;_1 (x’a'i- - ul.'i)z - % gl; (be'i - %b'1)2< xo (ho]-?‘)

e next observe that

n

. 1 1 1 1
El ;_1 ("'a'i - "1.,1)2 . (x’A':L/\ 1- 7 -mh,) /\1- 4 )("."1 Al- 7""1‘1’\1- L)

. (x’ - ul) A'].Al-l Al(x' - p.l)' aloZZ)
and
n ]
Py ¢l; (ot - uy)? o & - it A, A" < ) (k.23)
It has been observed above that
<1 -1
5~ eay AT
and

-1 2
PR EAPY PREY

Hence, the regions (1,16a) and (4.172) may be writien ‘
B N R ™ (L260)

- 1 - 1
(- pn 26" =)' - 6 - )0 - ) <K (41 70)
These regions are the same as those of (1,9) and(4,10) when the constant
term K is chosen properly. Various choices of X reflect the criterion
employed in the deoision procedurs. Some of these have been mentioned above

(e.g., maximum likelihood, minimax), I
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Tho correspondence of the two decision procedures is quite informative.
In order to arrive at the decision theory solut:lon, it was necessary to know .the
density functions of the categories. Knowledge of the a priorl probabilities,
although not indispensitle, was an essential part of the reasoning. The
techniques oresonted in this contract allow a procedure when neither of theseo

factors is known,

6
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5. CATEGORIZATION BY SBPARATION OF CIASSBS

5.1 Optimization Criteris

The .centul concept of the special theory of similarity described
in the preceding chapters is that nonidentical events of a common category
may be considered close by some method of measuring distance. This measure
of distance is placed ir evidence by that transformation of the signal space
which brings together like events by clustering them most. In this special
theory no serious attempt has been made to assure that the metrics which were
developed should separate events of different categories,

The purpose of this chapter is to introduce criteria for developing
opt imum metrics and transformations which not only cluster events of the same
class tut also separate those which b2long to different classes. Consider,
for example, the transformation which maximizes the mean-square distance
Yetween points which belong to different classes while it minimizes the
mean-square distance between points of the same class, The effect of such a
transformation is illustrated in Figure A0 where like events have been
clustered through minimization of intraset distance; and clusters have b;en
separated from each other through the maximization of i.nterset distances.

The transformation which accomplishes the stated objectives can be specified
" by the following problems.
Problem 1

Rind the transformation T within a specified class of transformations
which miximizes the mean-square interset distance subject to the constraint

that the sun of the mean-square interset and intraset distances is held constant.
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Figure 10 Separation of Classes

Note that for the sake of simplifying the mathematics, the mini-
nization éf intraset distances was converted to a constraint on the maximiza-
tion problem. If interset distances are maxinized, and the sum of inter and
intraset distances is constant, then it follows that intraset distances are
ninimized. We may {mpose the additional constraint that the mean-square
intraset distance of each class is equal, thereby avoiding the possible
preferential treatment of one class over another. Without the latter constraint
the situation indicated with dotted lines in Figure 10 may occur where minimi-

[ )
zation of the sum of intrasct distances may leave one set more clustered than

the other.

The above criterion of opflnizntion is given as an illustrative
example of how one may convert the desirable objective of separation of
classes to a mathematically expressible and solvable problem. Several alter-
nate ways of stating the desired objectives as well as choosing the constraints

are possible. For example, the mean-square intraset distance could be
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nininized while hoiding the interset distances constant.

The optimization criterion just discussed suggests a different dlock
diagram for the process of categorization than that showr{ in Pigure 6. Here
only a single t:snsfor-ltiQn is developed, resulting iﬁ only a single wmetric
with which to measure distance to all of the classes. The classification of
an event P is nc}oupllshed, as before, by noting to which of the classes the
event is most similar. The only difference is that now similarity to each
class is measured in the same sense, in the sense exhibited by the trans-

formation which maximally separated events of different categories, on the

average.

Lrobjem 2

A secood, even more interesting criterion for optimum categorization
is the optimization of the classificatory decision on the labeled events.
Classificatczy decisions are ultimately based on co-dgxlng the similarity S
(mean-square distance) of the event P with the known events of each class.

If P is ch&sen as any ;;mber.of Class A, for example, we would like that
S(P,{ABZ) - S(P, lsng), on the average, where [Bml is the set of known members
of any other Class B. Similarly, if P is any member of B, then

S(P,{ng) - S(P,{A&B). 'The two desirable requirements are conveniently
combined in the statement of the following probleﬁ.~

Find the metric or transformation of a given class of transformations
which maximizes S(P,EBml) - S(P, {Amg)' on the average, if P belongs to
Category A, while requiring that the average of S(P,{Amg) - S(P,[Bmg)for any

P contained in Category B is a positive constant, The constraint of this

70 =
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ptoblem assures that not only points of Category A but also those of B are

*
classified correctly, on the average.

It is important to note that the above problem is not aimed at maxi-
Illi;. the number of correct decisions. Instead it makes the correct decisions
most unequivocal, on the average. It is substantially more difficult to
maxisize the number of correct classifications. For that purpose 8 binary
function would have to be defined vhich assunes the more positive of its two
values whenever a decision is correct and, conversely, assumes the lower
value forincorrect classifications. The sum of this binary function fvllulted

for each labeled point would have to be maximized. This problem does not lend

itself to ready analytical solution; it may be handled, however, by computer

methods.

5.2 A Separating Transformation

The part}cullé\linetr trtngforustiou which ;axiuizes the mean-sqQuare
interset distance while holding the sum of the mean-square inter and intraset
distances constant is developed bLelow. Recall that the purpose of this trans-
formation is to-separate events of dissimilar categories whi le clustering
those which belong to the same class.

The mean-square distance between the M1 members of the set {?mg anq

the M. members of the set {Fpg, after their linear transformation, is given

2
in Bquation 5.1, where fms and gps are the‘sth coefficients of the nth and
pth members of the sets {ng and {FPI' respectively. For the sake of notational

simplicity this mean-square integset distance is denoted by s({vml, {G&] and

* The symmetrical situation where S'P,{}mg‘ - S‘P,{Bm;\for PeB is also

maximized leads to the same solution.
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1s the quantity to be maximized by a suitable choice of the linear trans-
formation. The choice of the notation above is intended to signify that the .

transformation to dbe found is a function of the two sets,

(e £d) - Z Z ) }j s - 20 5.0

n-l pul nel 8wl

The constraint that the mean-squaré distance @ between points
regardless of the set to which they belong is a constant, is expressed by
Equation 5.2, where Y is the coet‘ficient of any point belonging to the
union of the sets {F; and fGl M= g 2), and M = M_«

172
2

9= —-Z Z Z z s ~Vps)| = constant x. (5.2)

mll p=l n=l Lss=l

Both of the above equations may be simplified by expanding the
squares as double sums and interchanging the order of summatims. Carrying

out the indicated operations, we obtain Bquations 5.3 and 5.4.

N N N
.S‘{Fm . ans “or Xsr0 - (5.32)

n=1 s=1 rul .

where

Xsr © “NMM. M .Z z (ms i gpstmri L ) (5.3p)

m:l pel

T2
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and
N N N
s z z Z Yos Ynr t‘r.. K, (5.42)
nsl s=l pel
where
| I |
tsr ® tes " “.l; z 21(1;" - Y;,,Nr” - fp,’- (5.4b)
el pw

The coefficient Xgr is the general element of the matrix [x] which is of the
form of & covariance matrix and arises from considerations of cross-set
distances. The matrix [T] with gencral coefficient tyrr OF the other hand,
arises from considerations involving distances between the total number of
points of all sets.

We now maximize Equation 5.3, subject to the constraint of
Bquation 5.4a by the method of.lagrange multipliers. Since dwng-is arbitrary

in Bquation 5.5, Bquation 5.6 must be satisfied.

' N N N _
dS - \d8 = z Z dwns Z Hnr‘xsr - XtSt’ =0 (5.5)

nel s=1 =]
N
. z wnr‘xSr - Msr) = 0, for n=1,2,...,N; s=1,2,...,N, (5.%)
rel
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Bquation 5.6 may be written in matrix notation to exhibit the
solution in an illuninating way. If we let W be a vector with N components

w w_ ., then Bquation 5.6 say be writtem as in Equation 5.7a,

nl **" "nN

wl[x-u] «0
I!O.IQ.OC*
wm[x- N of SFIs) (S.7a)

* e e s 00 m0 s

WN[X - RTJ =0

By post-nultiplying both sides of the equation by ‘l'-l, we obtain Bquation (5.7b)

which is in the form of an eigenvalue problem,

w:l[xr'1 -l =0 )
wz{xf‘ -] =0

: (5.7b)
ww[xr'1 - u: -

Note, that 'lI'.1 always exists since T is positive definite. “Bquations S.7a and b.
may be satisfied in either ot two ways, Bither "n' the nth row of the

linear transformation descyibed by the matrix [N], is identi;:ally Z#ro, or it

is an eigeowvector of the m&trix[ﬂ‘-‘l]. We must substitute back into the
mean-square interset distance given by Bquation 5.3a to find the solution which
maximizes S. To facilitate this substitution, we recognize .that through

matrix notation Bquations %.3a and 5.4a may be written as Bquations 5.8 and

5.9, respectively,

T
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At ?’” . i v [z] . (5.8)

Nel

0. i»-nn[r] W ek : (5.9)

nel

But from Bquation 5.7a we see that nnx ®ay plways be replaced by llnr.
Carrying out this sudstitution in 3.8, we obtain Bquation 5,10, wheze the

constraint of 5.9 is also utilgzed.

s“"&.’ {Gpgl - E T W= | (5.10) |

It is now apparent that the &g:keut eigenvalue of [X - xr] = 0 yields the rows
of the transformation lﬂ}:h_nlximlyei‘?he ®ean-square interset distance
subjact to the constraint that the mean-square value of all distances is a
constant, The trlnsqunation is stated by Bquation 5.11, lﬁere

Wl EWigr iy o eigenvector corresponding to xm.x:

r —

'11 '12 ve s 'w
w w cese W

[w]. u 12 N (5.11)

w

Y11 Y12 o0 i
- .

The transformation of the equation above is singular, expressing the

fact that the projection of the points along the line of maximum mean-square
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intecset distat;cc and minimum intraset distance is the only important featuu.;
of events that determines their class membership. This is illustrated in
Figure 11__ where line aa' is in the di:ection of the rirst eigenvector of the
natrix [tl‘-‘l]. A point of unknown classification is grouped in Category B
because }hc Qean-squatc difference between its projection on line aa' and the

projection of points belonging to set B, S‘P, fB}’, is less than S(P, {l;’,

the corresponding difference with members of set A,

s(”{A})

o

s(7,{B}) . t!

-t

Figure X1 A Singular Class-Separating Transformation

Forcing the separating transformation to be non-singular is possible
by the imposition of a different constraint on the maxim;?agiéu. Unfortu-
nately, the mathematical difficulty of imposing non-singularity directly is a =~
formidable task. In general it requires evaluating a determinant, suci: as the
Jranian, and assuring that it does not vanish. 1In the following discussion,

L]
at first a seemingly meaningless constraint will be imposed on the maximization

of the mean-square interset distance, After the solution is obtained, it
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will be shown that the meaningless constraint can be convected to a constraint

which holds the mean-square of all distsnces constant—the same constraint

we used previously.

"“The mean-square interset distance to be maxinized is given by

Bquation 5.3a which is reproduced here as Bquation $5.12.

s“’l S%l) z Z Z os Yor %ar® . (5.12)

nel sel rel

The constraint we will impose is that the mean-square length of the projections
of all distances between any pair of points onto the directions l. be fixed,
btut in general, different constants. Thig constraint ia expreased by

Bquation .5.13 which differs from the previcusly used constraint of Equation 5.4
only by fixing coordinate by coordinate the mean~-square value ot:' all possible

distances b&v‘eempoints.
z Zln' Yo Yor ® Koo for ne}l,2,...,N. ] (5.13)

Assigning an arbitrary constant xn to the differential of each of the above
N constraints and using the method of lagrange multipliets in the maximization

of S above, Bquation 5.14 is obtained.

dS-Zx of, .Z Zdw Z nxxr-knt",] (5.0

nel nsl sl
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when we make use of the convenient matrix notation employed earlier, we
obtain Bquation 5.15 which differs significantly f(rom Bquation S.7a, despite

the sinilar appearance of the two equations.

wl[x - "1’] .0
'2 X - 121‘]- 0

wN[x - nT )= 0

(5.15)

The solution of Bquation S.15 states that each row of the linear transformation,

n"ih,_ls a different eigenvector of the [! 1-1] matrix. The transformation El]
is therefore orthogonal. Bquation 5.16 is a further constraint which converts
that of 5.15 to holding the mean-square of all distances constant, and thus

acconplishes the aim of this section.

N .
K= Z Ky . (5.16)

Note that before we knew that the rows of the transformation [w]
would be orgﬁogonll, the condition expressed by Bquation 5.16 does not fix the
total distances. .The above procedure resulted in finding the non-singular
orthogonal transformation which optimally separates the classes and optimally
clusters members of the same class,

We will now compute the nean*squltqrint;rset distance S of

Bquation 5.12. To facilitate the computation, S will be written in matrix

notation as in Bquation 3,17,
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when we make use of the convenient matrix notation employed earlier, we
obtain Bguation $.15 which diffe:s significantly f(rom Bquation 5.7, despite

the similar appearance of the two eQuations,

wI[x - xl'r] .0
WX - “z"]‘ 0

(5.15)
wu[x - er]. 0

The solution of Bquation $.15 states that each row of the linear transformation,
a.'n"is a diffezent eigenvector of the [! T'I] matrix. The transformation El]
is therefore orthogonal. Bquation 5.16 is a further constraint which converts
that of 5.15 to holding the mean-square of all distances constant, and thus

acconplishes the aim of this section.

.

K w Z x'!.: . | (5.16)

Note that before we knew that the rows of the transformation [W]
would be o:ghogonal, the condition expressed by Bquation 5.16 does not fix the
total distances. The above procedure resulted in finding the non-singular
orthogonal transformation which optimally separates the classes and optimally
clusters members of the same class.

We ;111 now compute the neanésquatglintétset distance S of

Bquation 5.12, To facilitate the computntion; S will be written in matrix

notation as in Bquation 5.17,
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s({pﬂ%, 26‘31 . Z u; x'w: (5217

nul

L.

From Dquation S5.15 it is seen, however, that if S is maxinun, unx may be

T
geplaced with Anuﬁr to obtain Bquation 5.18, where inT 'n . Kn

N
Smlipal' Scp'“ . Z A, ¥ T, (s.18)

nul

from Bquation 5.13 (in matrix nctation). Bquation 5.19 is thus obtained.
It is now readily seen, with reference to Bquation 5.10, that the upper bound
on the mesn-square interset distance is achieved by the singular trlnsﬁ.rna*ion

discussed earlier, and wg pay for forcing the transformation to be non-singular

‘by achieving only a reduced separability of classes.

N

smx({ral, {c%] . Z A, K. (5.19)

nN=l

Before leaving the discussion of c}asl-sep;rating txgnsfornations,
a few important facts must be pointed out. A gimple ‘formal replacement of
the matrices X and T by other suitably chosen matrices yields the solution of
many interesting and useful problems. It is not the purpose of the following
remarks to catalog the problems sof;ed by the formal solution previously
obtained: yet some deserve mdntion because of their importance. It may be
readily verified, for instance, that replacing T by I is equivalent to

maximizing the between-set distances, subject to the condition that the volume

79
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of the space is a constant. The tranformation which accomplishes this is
orthogonal with rows equal to different eigenvectors of the satrix X. This

is a physically otwious result, of course, since the eigenvectors of X are the
set of orthogonal directions along which iaggrset distances are maxinized,

on the average. A figure which would illustrate the result is very sinilar to
Pigure 11, .

Another replacement which wust ve .sirgled out id the substitution
of the matrix L for T, where L is the covariance matrix associated with all
intraset distances (distances among 1ike eygnty). Bigenvectors of [x - XL]
fom rows of the transformation which maxiniges interset distances while
holding intrasei distances constant. This problem is essentially the same
as the maximization of interset distances while holding the sum of inter and
intraset distances constant, yet the relative separation of sets acﬁieved by
the two transformations is different. The difference may be exhibited by
com;uting the ratio of the neln-gquare separat!qn of sets to the mean cluster-
ing of elements within the same set, as measured by the mean-square intraset
distance. It may be concluded, therefore, that the constraint employed in
the maximization of interset distances does have an influence on the degree
of separation achieved between sets.

Throughout this chapter the class-separating transformations were
developed by referéhce to the existence of only two sets, ifmg and {Ség. The
results obtained by these methods are mor¢ general, however, because they
apply directly to the separation of an arbitrary number of sets. For instance,
in the maximization of the mean-square 1nfers;t‘distance, there is no reason

why the matrix X should involve interset distances between only two sets. An
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arbitrary nusber of sets may be involved, and the interset distances are simply
all those distances measured between two points not in the same set. Similar
argunents are valid for all the other natrgceo iovolved. The only precaution
that nmust be ;aken concerns the possible use of additional constraints speci-
fying prefesential or nonpreferential treatment of classes. These additiomal
constraints may take the form of requiring, for instance, that the mean-
square intraset distance of all sets be equal or be related to each other by
sone constlnti. Aside from these minor matters, tge results apply to the

)

separation of any number of classes.

5.3 Maximizatiop of Correct Classifications

The correct classification of points of the set F are vhade more
unequivocal by the linear transformation which makes any event Fn of set F
more similar to members of F, on the average, than to those of another set G.
One of the vl;s in which the average unequivocalness of correct clnséiflcatory
decisions may be stated mathematically is to require that a numerical value
associated with the qu;lity of a decision be maximized, on the average. Of
the several quantitative measures of the quality of a decision which may be
defined, one that readily lends itself to mathematical treatment is given in
Bquation 5.20. The difference in the ‘similarity between a point P and each of
the two sets, P and G, is s quantity Q which is larger if the decision regarding

the classification of P is more unequivocal.

s [p, {G-“S) - s‘p,gﬁ)\ e Q . (5.20)
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Since decisions in previous chapters were based on . the compariscn of Q with

a suitable threshold value (such as zero), we now wisheto find that linesr
transformation which nnx!n!zes.q. on the average, whenever Q is to be positive,
I P is a wember of the aet F, then P is closer to P than to G and thus Q

is to be poaitive, The maximization of Q for PeP results in maximizing the
margin with which correct decianions are made, on the aversge., The foregoing
raximization 1a atated in Bquation 5,21 subject to the conatraint expresaed

by Bquation 3.22. The latter simply states that i PeG, the average decision i

atill correct, aa meaaured by the eargin "

s(pn. {cp}) - s(rn. {Fn}) « Q = maximum, subject to

s €, {r.}) . s(cn. {Gp]) " = ¥ = constant > 0, ‘

Utilizing previoualy obtained resulta, the above equations are

readily solved for the optimum linear transformation. Rewriting the first term
of Bquation 5,21, we note that it expresses the mean~square interset distance

between sets P and G and may be written aa in BqQuetion 5,23, where Equation

S.1 and the simplifying notation of 5.3 are enployed. .
M M

T A6 ) R LLL e

me] ps]l n=l| s=1

5 2

(5.2

(s.22)

(5,23a)

*Maximization of Q + K has the same solution,
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° s(r". {co}) " 2:‘:1 ?: :Z: " e For o C (sawm

The stcond term of Bquation S.21 is the mean-aquare intraset distance of set P
snd may be expressed as in Bquation $5.24. The argument of the covariance

coefficient u.,(r) signifies that it is a covarience of elements of the set P,

mn . s(_{pﬂ'} ,{p.}) -(—7})?; iiz Z valosfa)| (3290

p=l swl ael | g=l

s(pn. {a_}) . % i i i Yoy Yar Uar(P (5.240)

Similarly. the first term of Equation 5.22 ia the mesn-square interset distance,

and the second temm is the intraset ‘distance of set G, The maximization

problem can thus be restated by Equation 5.25a and b,

2My
" Maxielze G = Z z Z wodxe = e e | (5.250)
. nel ssl rsl 1 .
N N N - ' '
- 2 O ’
subject to K = Z Z Z Wos nrl *sr © Mz-l u“(G) (5.25b)

. nsl s=]1 r=l

Following the methods used earlier, the solution of the above problem may be

written down by inspection,
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N N N .
N | ;
A Y14 3 - '\ - -4 3 .
Q - 4K » E E dw_ E LA “—J-l"' v, (F) l'x" W u”(. .- (5.20)

nel sel ral

From 5.26 {t follows that Gguation S.27a must hold, where e and ar o€
g¢iven by Bguations $.27d and c.

N .
z 'M‘“lr 'yn, = 0, for nel,2,...,N and "1-3.---.?‘ (5.27a)
rel
M
" Xsr " Ugr(F) . (5.27b)

2
ﬁsr " Xgr T Nz-l qst(c) (5.27¢)

By reference to earlier results, such as those expressed by Bquation $.6,

the transformation whose coefﬂclent.s w o $atisfy an equation of the form
above, is the solution of the eigenvalue problem of Bquation 5.28, where wn

is a row of the matrix expressing the linear transformation.

W, [a(- xp .0

W, [oc- 28| « 0
2[ ‘ . (5.28)

V"N'[«.- Xp. s 0

-

Amalogous to the arguments used in ‘the previous section, the above solution

yields a singular transformation, Forcing the transformation to be non-

[ . &
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aingular, in the manner already outlined, results in the optimun transformation

‘a8 an orthogonal transformation, wheze each row of the matrix [h] is an eigen-

vector of [ai- \P]- 0. Murthermore, it is readily shown that the solution so
obtained ladccﬁ maxinizes §.

It is interesting to note that the maximization of the average
correct classifications can bde conaidered as the uu!alutio:: of the diﬂ’ex.em
between inter and intraset distances. This alternate statement of the problea

may be exhidbited by the addition of Bquation 5.25b to 5.2%

N N M
L l':L.; ; z ns el 2%: { a7 Yy (P .ﬁ "(c} . (3.29)

el

But the expression within the braces is simply the covariance 1;‘ associated
with all intraset distances. Since K is a constant, the maximization of
Bquation 5.29 is equivalent to the maximization of Q. .
In summing up the results of this ,chapter, it is seen that the problem

of learning to measure similarity to events of a common category, while profiting
from knowledge of nonmembers of the same category, may be treated as a maximi-
zation or minimization problem. A metric or a.lineer transformation is found
from a class of metrics or transformations which solves mathematical problems

(] [ )
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